List of published works:

50. Blue-light dependent ROS formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism.

L Consentino, S Lambert, C Martino, N Jourdan, P-E Bouchet, J Witczak, P Castello, M El-Esawi, F Corbineau, A D’Harlingue and M Ahmad. 2014; New Phytologist, in press.

49. Cellular metabolites enhance light sensitivity through alternate electron transfer pathways in

Arabidopsis cryptochrome. Wang X, Robles D, Moldt J, Essen L-O, Batschauer A, Bittl R, and Ahmad M 2014 ; Plant Cell; 26 :4519-31. doi: 10.1105/tpc.114.129809. Epub 2014 Nov

48. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.

Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R. 2013; J R Soc Interface. 10(88):20130638.

47. Lifetimes of Arabidopsis cryptochrome signaling states in vivo.

Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., and Batschauer, A. 2013; Plant J. 74: 583-592.

46. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1.

Sarah Burney, Ringo Wenzel, Tilman Kottke, Thomas Roussel, Nathalie Hoang, Jean-Pierre Bouly, Robert Bittl, Joachim Heberle and Margaret Ahmad.
Angewandte Chemie, Internat. ed. 2012; 51:

45. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.

Jacqueline Vieira, Alex R.Jones, Antoine Danon, Michiyo Sakuma, Nathalie Hoang, David Robles, Shirley Tait, Derren J. Heyes, Marie Picot, Taishi Yoshii, Charlotte Helfrich-Förster, Guillaume Soubigou, Jean-Yves Coppee, André Klarsfeld, Francois Rouyer, Nigel S. Scrutton and Margaret Ahmad. PLoS One. 2012;7(3):e31867. Epub 2012 Mar 12.

44. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor

Kiminori Maeda, Alexander J. Robinsona, Kevin B. Henbest, Hannah J.
Hogben, Till Biskup, Margaret Ahmad, Erik Schleicher, Stefan Weber,
Christiane R. Timmel & P. J. Hore. P.N.A.S, Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4774-9. Epub 2012 Mar 14.

43. Light-induced conformational changes in full-length Arabidopsis thaliana Cryptochrome 1 detected by the transient grating method.

Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff E, Terazima M.
J Mol Biol. 2011, 413(1):128-37.

42. The cryptochromes: blue light photoreceptors in plants and animals.

Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van
der Horst GT, Batschauer A, Ahmad M. Annu Rev Plant Biol. 2011, 62:335-64.

click here to read more…

41. Light activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.

Muller P, Ahmad M. J Biol Chem. 2011, 286(24):21033-40

click here to read more…

40. Cryptochrome: A photoreceptor with the properties of a magnetoreceptor?

Ritz T, Yoshii T, Helfrich-Foerster C, Ahmad M.
Commun Integr Biol. 2010, 3(1):24-7.

click here to read more…

39. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing.

Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W. J R Soc Interface.
2010, 7 Suppl 2:S135-46.

click here to read more…

38. Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.

Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP.
FEBS Lett. 2009 May 6; 583(9):1427-33.

click here to read more…

37. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock.

Yoshii T, Ahmad M,Helfrich-Förster C.
PLoS Biol. 2009 Apr 7; 7(4):e1000086.

click here to read more…

36. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.

Balland V, Byrdin M, Eker AP, Ahmad M, Brettel K. J Am
Chem Soc. 131, 426-7 (2009)

35. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.

Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R, Ahmad M.
PLoS Biol 6(7):e160 (2008)

34. Evidence of a light sensing role for folate in Arabidopsis cryptochrome blue-light photoreceptors.

Hoang N, Bouly JP, Ahmad M.
Molecular Plant 1: 68 – 74 (2008)

33. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.

Kang B, Grancher N, Koyffmann V, Lardemer D, Burney S, Ahmad M.
Planta 227(5):1091-9 (2008)

32. Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins.

Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D.J
Exp Bot. 58 :4269-81 (2007)

31. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.

Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A.J
Biol Chem. 282, 14916-22 (2007)

30. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.

Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M. J
Biol Chem. 282, 9383-91 (2007)

29. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.

Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M.
Plant J 49, 428-41 (2007)

28. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.

Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W.
Planta 225, 615-24 (2007)

27. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana.

Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M.
Planta 224, 995-1003 (2006)

26. Blue Light-induced changes in Arabidopsis cryptochrome-1 probed by FTIR Difference Spectroscopy.

Kottke T, Batschauer A, Ahmad M, Heberle J.
Biochemistry 45, 2472 – 9 (2006)

25. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.

Zeugner A, Byrdin M, Bouly JP, Bakrim N, Giovani B, Brettel K, Ahmad M. J
Biol Chem 280, 19437-40. (2005)

24. Possible signaling mechanisms of Arabidopsis CRY1 blue-light photoreceptor.

Bouly JP,  Giovani B, Ahmad M.
Proceedings of the Yamada Symposium, Yamada, Japan (2004)

23. Light-induced electron transfer in a cryptochrome blue-light photoreceptor.

Giovani B, Byrdin M, Ahmad M, Brettel K. Nat
Struct Biol 10, 489-90 (2003).

22. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.

Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M.
Eur J Biochem 270, 2921-8 (2003)

21. Cryptochrome and flavoprotein blue-light photoreceptors.

Ahmad M
In Handbook of Photochemistry and Photobiology v.4, S. Nalwa ed. (2003).

20. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.

Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D.
Plant Physiol 129, 774-785 (2002)

19. Cryptochrome 1 controls tomato development in response to blue light.

Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giuiliano G.
Plant J. 18, 551-556 (1999).

18. Seeing the World in Red and Blue: Insight into Plant Vision and Photoreceptors.

Ahmad M.
Current Opinion in Plant Biology  v.2, 230 – 235 (1999)

17. NPL1: A Second Memberof the NPH Serine/Threonine Kinase Family of Arabidopsis.

Jarillo J, Ahmad M, Cashmore AR.
Plant Physiology 117, pg.719 (1998)

16. A Novel Arabidopsis Gene Related To The Blue-Light Photoreceptor/Photolyase Family.

Ahmad M, Jarillo J, Cashmore, AR.
Plant Physiology 117, pg. 718 (1998)

15. Cryptochrome blue light photoreceptors of Arabidopsis interact with phytochrome.

Ahmad M, Jarillo J, Smirnova O, Cashmore AR.
Molecular Cell 1, 939-948 (1998)

14. Cryptochrome blue light photoreceptors of Arabidopsis are implicated in phototropism.

Jarillo J, Smirnova O, Cashmore AR.
Nature 392, 720-723 (1998)

13. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.

Ahmad M, Jarillo J, Cashmore AR
Plant Cell 10,  197-208 (1998)

12. An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis thaliana.

Ahmad M, Jarillo J, Klimczak L, Landry L, Peng T, Last RL, Cashmore AR.
Plant Cell 9, 199-207 (1997)

11. The blue light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.

Ahmad M, Cashmore AR
Plant Journal 11, 421-427 (1997)

10. The pef mutants of Arabidopsis define lesions early in the phytochrome signalling pathway.

Ahmad M, Cashmore AR
Plant Journal 10, 1103-1110 (1996)

9. Arabidopsis cryptochrome 1 is a soluble protein mediating blue-light-dependent regulation of plant growth and development.

Lin C, Ahmad M, Cashmore AR
Plant Journal 10, 893-902 (1996).

8. CRY2: A second member of the Arabidopsis cryptochrome gene family.

Lin C, Ahmad M, Chan J, Cashmore AR.
Plant Physiology 110, 1047 (1996)

7. Seeing Blue: The discovery of cryptochrome.

Ahmad M, Cashmore AR.
Plant Molecular Biology 30, 851-861 (1996)

6. Association of flavin adenine dinucleotide with the Arabidopsis blue-light receptor CRY1.

Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR
Science 269: 968-970 (1995)

5. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV/A, and green light.

Lin C, Ahmad M, Gordon D, Cashmore AR.
Proc Natl Acad Sci USA 92, 8423-8427 (1995)

4. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation.

Ahmad M, Lin C and Cashmore AR.
Plant Journal 8, 653-658 (1995)

3. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor.

Ahmad M and Cashmore AR.
Nature 366, 162-166 (1993)

2. Topology of membrane insertion in vitro and plasma membrane assembly in vivo of the yeast arginine permease.

Ahmad M and Bussey AH.
Molecular Microbiology. 2 : 550-559 (1988)

1. Yeast arginine permease; nucleotide sequence of the CAN1 gene.

Ahmad M and Bussey AH.
Current Genetics 10, 587 – 592 (1986)