List of published works:

71. Therapeutic application of light and electromagnetic fields to reduce hyper-inflammation triggered by COVID-19.

Aguida B, Drahy S, Jourdan N and Ahmad, M. Communicative and Integrative Biology, (2021).

70. Effect of temperature on the Arabidopsis cryptochrome photocycle.

Pooam M, Dixon N, Hilvert M, Misko P, Waters K, Jourdan N, Drahy S, Mills S, Engle D, Link J, Ahmad M. Physiol Plant. 2021 doi: 10.1111/ppl.13365.

69. HEK293 cell response to static magnetic fields via the radical pair mechanism may explain therapeutic effects of pulsed electromagnetic fields.

Pooam M, Jourdan N, El Esawi M, Sherrard RM, Ahmad M. PLoS One. 2020 15(12):e0243038.
doi: 10.1371/journal.pone.0243038.

68. Arabidopsis cryptochrome and Quantum Biology: new insights for plant science and crop improvement.

Marootpong Pooam, Mohamed El-Esawi, Blanche Aguida & Margaret Ahmad. J. Plant Biochem. Biotechnol. 2020; DOI 10.1007/s13562-020-00620-6

67. Arabidopsis cryptochrome is responsive to Radiofrequency (RF) electromagnetic fields.

Albaqami M, Hammad M, Pooam M, Procopio M, Sameti M, Ritz T, Ahmad M, Martino CF.Sci Rep. 2020 10(1):11260. doi: 10.1038/s41598-020-67165-5.

66. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.

Hammad M , Albaqami M , Pooam M , Kernevez E , Witczak J , Ritz T , Martino C , Ahmad M .Photochem Photobiol Sci. 2020 Mar 1;19(3):341-352. doi: 10.1039/c9pp00469f. Epub 2020 Feb 17.PMID: 32065192

65. Overexpression of AtWRKY30 Transcription Factor Enhances Heat and Drought Stress Tolerance in Wheat (Triticum aestivum L.).

El-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M.Genes (Basel). 2019 Feb 20;10(2):163. doi: 10.3390/genes10020163.

64. Low-intensity Electromagnetic Fields Induce Human Cryptochrome to Modulate Intracellular Reactive Oxygen Species.

Sherrard RM, Morellini B, Jourdan N, El-Esawi M, Arthaut L-D, Niessner C, Rouyer F, Klarsfeld A, Doulazmi M, Witczak J d’Harlingue A, Mariani J, Mclure I, Martino CF and Ahmad M. PLoS Biol. 2018 16(10):e2006229. doi: 10.1371/journal.pbio.2006229.

63. Magnetic sensitivity mediated by the Arabidopsis blue light receptor cryptochrome occurs during flavin reoxidation in the dark.

Pooam M, Arthaut L-D, Burdick D, Link J, Martino CF, Ahmad M. Planta, 2019 Feb;249(2):319-332. doi: 10.1007/s00425-018-3002-y.

62. Analysis of Genetic Variation and Enhancement of Salt Tolerance in French Pea (Pisum Sativum L.).

El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA, Witczak J, Ahmad M. 2018. Int J Mol Sci. 2018 Aug 17;19(8). pii: E2433. doi: 10.3390/ijms19082433.

61. Analysis of the Genetic Diversity and Population Structure of Austrian and Belgian Wheat Germplasm within a Regional Context Based on DArT Markers.

El-Esawi MA, Witczak J, Abomohra AE, Ali HM, Elshikh MS, Ahmad M. 2018. Genes 9(1). pii: E47. doi: 10.3390/ genes9010047.

60. Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome.

El-Esawi M, Arthaut LD, Jourdan N, d'Harlingue A, Link J, Martino CF, Ahmad M. 2017. Sci Rep. 7(1):13875. doi: 10.1038/s41598-017-13832-z.

59. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

Holtkotte X, Ponnu J, Ahmad M, Hoecker U. 2017. PLoS Genet. 13(10):e1007044. doi: 10.1371/journal.pgen.1007044. eCollection 2017

58. Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle.

Arthaut LD, Jourdan N, Mteyrek A, Procopio M, El-Esawi M, d'Harlingue A, Bouchet PE, Witczak J, Ritz T, Klarsfeld A, Birman S, Usselman RJ, Hoecker U, Martino CF, Ahmad M. 2017. PLoS One 12(3):e0171836. doi: 10.1371/journal.pone.0171836. eCollection 2017.

57. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

El-Esawi MA, Elkelish A, Elansary HO, Ali HM, Elshikh M, Witczak J, Ahmad M. 2017. Oxid Med Cell Longev. 2017;2017:5604746. doi: 10.1155/2017/5604746. Epub 2017 Aug 1.

56. Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADH(o) Accumulation Correlates with Biological Activity.

Procopio M, Link J, Engle D, Witczak J, Ritz T, Ahmad M. 2016 Front Plant Sci. 7:888. doi: 10.3389/fpls.2016.00888. eCollection 2016.

55. The functional divergence between SPA1 and SPA2 in Arabidopsis photomorphogenesis maps primarily to the respective N-terminal kinase-like domain.

Chen S, Wirthmueller L, Stauber J, Lory N, Holtkotte X, Leson L, Schenkel C, Ahmad M, Hoecker U. 2016. BMC Plant Biol.16(1):165. doi: 10.1186/s12870-016-0854-9.

54. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.

Wiltschko R, Ahmad M, Nießner C, Gehring D, Wiltschko W 2016. J R Soc Interface. 13(118). pii: 20151010. doi: 10.1098/rsif.2015.1010.

53. Photocycle and signaling mechanisms of plant cryptochromes.

Ahmad M 2016 Curr Opin Plant Biol. 33:108-115. doi: 10.1016/j.pbi.2016. 06.013. Epub 2016 Jul 14. Review.

52. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.

El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M. 2015 Plant Signal Behav. 10(9):e1063758. Doi: 10.1080/ 15592324.2015. 1063758.

51. Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role.

Martino CF, El-Esawi M, Witczak J, Bouchet PE, d'Harlingue A, Ahmad M. 2015; Plant Signal Behav.10(8):e1042647. doi: 10.1080/15592324.2015.1042647.

50. Blue-light dependent ROS formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism.

Consentino L, Lambert S, Martino C, Jourdan N, Bouchet P-E, Witczak J, Castello P, El-Esawi M, Corbineau F, D’Harlingue A and Ahmad M 2015 ; New Phytol; 206(4):1450-62. doi: 10.1111/nph.13341. Epub 2015 Feb 26.

49. Cellular metabolites enhance light sensitivity through alternate electron transfer pathways in

Arabidopsis cryptochrome. Wang X, Robles D, Moldt J, Essen L-O, Batschauer A, Bittl R, and Ahmad M 2014 ; Plant Cell; 26 :4519-31. doi: 10.1105/tpc.114.129809. Epub 2014 Nov

48. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.

Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R. 2013; J R Soc Interface. 10(88):20130638.

47. Lifetimes of Arabidopsis cryptochrome signaling states in vivo.

Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., and Batschauer, A. 2013; Plant J. 74: 583-592.

46. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1.

Sarah Burney, Ringo Wenzel, Tilman Kottke, Thomas Roussel, Nathalie Hoang, Jean-Pierre Bouly, Robert Bittl, Joachim Heberle and Margaret Ahmad.
Angewandte Chemie, Internat. ed. 2012; 51:

45. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.

Jacqueline Vieira, Alex R.Jones, Antoine Danon, Michiyo Sakuma, Nathalie Hoang, David Robles, Shirley Tait, Derren J. Heyes, Marie Picot, Taishi Yoshii, Charlotte Helfrich-Förster, Guillaume Soubigou, Jean-Yves Coppee, André Klarsfeld, Francois Rouyer, Nigel S. Scrutton and Margaret Ahmad. PLoS One. 2012;7(3):e31867. Epub 2012 Mar 12.

44. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor

Kiminori Maeda, Alexander J. Robinsona, Kevin B. Henbest, Hannah J.
Hogben, Till Biskup, Margaret Ahmad, Erik Schleicher, Stefan Weber,
Christiane R. Timmel & P. J. Hore. P.N.A.S, Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4774-9. Epub 2012 Mar 14.

43. Light-induced conformational changes in full-length Arabidopsis thaliana Cryptochrome 1 detected by the transient grating method.

Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff E, Terazima M.
J Mol Biol. 2011, 413(1):128-37.

42. The cryptochromes: blue light photoreceptors in plants and animals.

Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van
der Horst GT, Batschauer A, Ahmad M. Annu Rev Plant Biol. 2011, 62:335-64.

click here to read more…

41. Light activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.

Muller P, Ahmad M. J Biol Chem. 2011, 286(24):21033-40

click here to read more…

40. Cryptochrome: A photoreceptor with the properties of a magnetoreceptor?

Ritz T, Yoshii T, Helfrich-Foerster C, Ahmad M.
Commun Integr Biol. 2010, 3(1):24-7.

click here to read more…

39. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing.

Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W. J R Soc Interface.
2010, 7 Suppl 2:S135-46.

click here to read more…

38. Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.

Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP.
FEBS Lett. 2009 May 6; 583(9):1427-33.

click here to read more…

37. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock.

Yoshii T, Ahmad M,Helfrich-Förster C.
PLoS Biol. 2009 Apr 7; 7(4):e1000086.

click here to read more…

36. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.

Balland V, Byrdin M, Eker AP, Ahmad M, Brettel K. J Am
Chem Soc. 131, 426-7 (2009)

35. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.

Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R, Ahmad M.
PLoS Biol 6(7):e160 (2008)

34. Evidence of a light sensing role for folate in Arabidopsis cryptochrome blue-light photoreceptors.

Hoang N, Bouly JP, Ahmad M.
Molecular Plant 1: 68 – 74 (2008)

33. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.

Kang B, Grancher N, Koyffmann V, Lardemer D, Burney S, Ahmad M.
Planta 227(5):1091-9 (2008)

32. Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins.

Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D.J
Exp Bot. 58 :4269-81 (2007)

31. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.

Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A.J
Biol Chem. 282, 14916-22 (2007)

30. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.

Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M. J
Biol Chem. 282, 9383-91 (2007)

29. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.

Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M.
Plant J 49, 428-41 (2007)

28. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.

Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W.
Planta 225, 615-24 (2007)

27. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana.

Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M.
Planta 224, 995-1003 (2006)

26. Blue Light-induced changes in Arabidopsis cryptochrome-1 probed by FTIR Difference Spectroscopy.

Kottke T, Batschauer A, Ahmad M, Heberle J.
Biochemistry 45, 2472 – 9 (2006)

25. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.

Zeugner A, Byrdin M, Bouly JP, Bakrim N, Giovani B, Brettel K, Ahmad M. J
Biol Chem 280, 19437-40. (2005)

24. Possible signaling mechanisms of Arabidopsis CRY1 blue-light photoreceptor.

Bouly JP,  Giovani B, Ahmad M.
Proceedings of the Yamada Symposium, Yamada, Japan (2004)

23. Light-induced electron transfer in a cryptochrome blue-light photoreceptor.

Giovani B, Byrdin M, Ahmad M, Brettel K. Nat
Struct Biol 10, 489-90 (2003).

22. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.

Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M.
Eur J Biochem 270, 2921-8 (2003)

21. Cryptochrome and flavoprotein blue-light photoreceptors.

Ahmad M
In Handbook of Photochemistry and Photobiology v.4, S. Nalwa ed. (2003).

20. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.

Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D.
Plant Physiol 129, 774-785 (2002)

19. Cryptochrome 1 controls tomato development in response to blue light.

Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giuiliano G.
Plant J. 18, 551-556 (1999).

18. Seeing the World in Red and Blue: Insight into Plant Vision and Photoreceptors.

Ahmad M.
Current Opinion in Plant Biology  v.2, 230 – 235 (1999)

17. NPL1: A Second Memberof the NPH Serine/Threonine Kinase Family of Arabidopsis.

Jarillo J, Ahmad M, Cashmore AR.
Plant Physiology 117, pg.719 (1998)

16. A Novel Arabidopsis Gene Related To The Blue-Light Photoreceptor/Photolyase Family.

Ahmad M, Jarillo J, Cashmore, AR.
Plant Physiology 117, pg. 718 (1998)

15. Cryptochrome blue light photoreceptors of Arabidopsis interact with phytochrome.

Ahmad M, Jarillo J, Smirnova O, Cashmore AR.
Molecular Cell 1, 939-948 (1998)

14. Cryptochrome blue light photoreceptors of Arabidopsis are implicated in phototropism.

Jarillo J, Smirnova O, Cashmore AR.
Nature 392, 720-723 (1998)

13. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.

Ahmad M, Jarillo J, Cashmore AR
Plant Cell 10,  197-208 (1998)

12. An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis thaliana.

Ahmad M, Jarillo J, Klimczak L, Landry L, Peng T, Last RL, Cashmore AR.
Plant Cell 9, 199-207 (1997)

11. The blue light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.

Ahmad M, Cashmore AR
Plant Journal 11, 421-427 (1997)

10. The pef mutants of Arabidopsis define lesions early in the phytochrome signalling pathway.

Ahmad M, Cashmore AR
Plant Journal 10, 1103-1110 (1996)

9. Arabidopsis cryptochrome 1 is a soluble protein mediating blue-light-dependent regulation of plant growth and development.

Lin C, Ahmad M, Cashmore AR
Plant Journal 10, 893-902 (1996).

8. CRY2: A second member of the Arabidopsis cryptochrome gene family.

Lin C, Ahmad M, Chan J, Cashmore AR.
Plant Physiology 110, 1047 (1996)

7. Seeing Blue: The discovery of cryptochrome.

Ahmad M, Cashmore AR.
Plant Molecular Biology 30, 851-861 (1996)

6. Association of flavin adenine dinucleotide with the Arabidopsis blue-light receptor CRY1.

Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR
Science 269: 968-970 (1995)

5. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV/A, and green light.

Lin C, Ahmad M, Gordon D, Cashmore AR.
Proc Natl Acad Sci USA 92, 8423-8427 (1995)

4. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation.

Ahmad M, Lin C and Cashmore AR.
Plant Journal 8, 653-658 (1995)

3. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor.

Ahmad M and Cashmore AR.
Nature 366, 162-166 (1993)

2. Topology of membrane insertion in vitro and plasma membrane assembly in vivo of the yeast arginine permease.

Ahmad M and Bussey AH.
Molecular Microbiology. 2 : 550-559 (1988)

1. Yeast arginine permease; nucleotide sequence of the CAN1 gene.

Ahmad M and Bussey AH.
Current Genetics 10, 587 – 592 (1986)